95 research outputs found

    Automatic programming methodologies for electronic hardware fault monitoring

    Get PDF
    This paper presents three variants of Genetic Programming (GP) approaches for intelligent online performance monitoring of electronic circuits and systems. Reliability modeling of electronic circuits can be best performed by the Stressor - susceptibility interaction model. A circuit or a system is considered to be failed once the stressor has exceeded the susceptibility limits. For on-line prediction, validated stressor vectors may be obtained by direct measurements or sensors, which after pre-processing and standardization are fed into the GP models. Empirical results are compared with artificial neural networks trained using backpropagation algorithm and classification and regression trees. The performance of the proposed method is evaluated by comparing the experiment results with the actual failure model values. The developed model reveals that GP could play an important role for future fault monitoring systems.This research was supported by the International Joint Research Grant of the IITA (Institute of Information Technology Assessment) foreign professor invitation program of the MIC (Ministry of Information and Communication), Korea

    Double-diffusive natural convection in a differentially heated wavy cavity under thermophoresis effect

    Get PDF
    A numerical analysis is made for thermophoretic transport of small particles through the convection in a differentially heated square cavity with a wavy wall. The governing gas-particle partial differential equations are solved numerically for some values of the considered parameters to investigate their influence on the flow, heat, and mass transfer patterns. It is found that the effect of thermophoresis can be quite significant in appropriate situations. The number of undualtions can essentially modify the heat transfer rate and fluid flow intensity

    Self-adaptive combination of global tabu search and local search for nonlinear equations

    Get PDF
    Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modeling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methodsFundação para a Ciência e a Tecnologia (FCT

    A mathematical framework for contact detection between quadric and superquadric surfaces

    Get PDF
    The calculation of the minimum distance between surfaces plays an important role in computational mechanics, namely, in the study of constrained multibody systems where contact forces take part. In this paper, a general rigid contact detection methodology for non-conformal bodies, described by ellipsoidal and superellipsoidal surfaces, is presented. The mathematical framework relies on simple algebraic and differential geometry, vector calculus, and on the C2 continuous implicit representations of the surfaces. The proposed methodology establishes a set of collinear and orthogonal constraints between vectors defining the contacting surfaces that, allied with loci constraints, which are specific to the type of surface being used, formulate the contact problem. This set of non-linear equations is solved numerically with the Newton-Raphson method with Jacobian matrices calculated analytically. The method outputs the coordinates of the pair of points with common normal vector directions and, consequently, the minimum distance between both surfaces. Contrary to other contact detection methodologies, the proposed mathematical framework does not rely on polygonal-based geometries neither on complex non-linear optimization formulations. Furthermore, the methodology is extendable to other surfaces that are (strictly) convex, interact in a non-conformal fashion, present an implicit representation, and that are at least C2 continuous. Two distinct methods for calculating the tangent and binormal vectors to the implicit surfaces are introduced: (i) a method based on the Householder reflection matrix; and (ii) a method based on a square plate rotation mechanism. The first provides a base of three orthogonal vectors, in which one of them is collinear to the surface normal. For the latter, it is shown that, by means of an analogy to the referred mechanism, at least two non-collinear vectors to the normal vector can be determined. Complementarily, several mathematical and computational aspects, regarding the rigid contact detection methodology, are described. The proposed methodology is applied to several case tests involving the contact between different (super)ellipsoidal contact pairs. Numerical results show that the implemented methodology is highly efficient and accurate for ellipsoids and superellipsoids.Fundação para a Ciência e a Tecnologia (FCT

    Testing Nelder-Mead based repulsion algorithms for multiple roots of nonlinear systems via a two-level factorial design of experiments

    Get PDF
    This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.Fundação para a Ciência e Tecnologia (FCT

    Landslide Risk Assessment by Using a New Combination Model Based on a Fuzzy Inference System Method

    Get PDF
    Landslides are one of the most dangerous phenomena that pose widespread damage to property and human lives. Over the recent decades, a large number of models have been developed for landslide risk assessment to prevent the natural hazards. These models provide a systematic approach to assess the risk value of a typical landslide. However, often models only utilize the numerical data to formulate a problem of landslide risk assessment and neglect the valuable information provided by experts’ opinion. This leads to an inherent uncertainty in the process of modelling. On the other hand, fuzzy inference systems are among the most powerful techniques in handling the inherent uncertainty. This paper develops a powerful model based on fuzzy inference system that uses both numerical data and subjective information to formulate the landslide risk more reliable and accurate. The results show that the proposed model is capable of assessing the landslide risk index. Likewise, the performance of the proposed model is better in comparison with that of the conventional techniques

    Feature Selection via Chaotic Antlion Optimization

    Get PDF
    Selecting a subset of relevant properties from a large set of features that describe a dataset is a challenging machine learning task. In biology, for instance, the advances in the available technologies enable the generation of a very large number of biomarkers that describe the data. Choosing the more informative markers along with performing a high-accuracy classification over the data can be a daunting task, particularly if the data are high dimensional. An often adopted approach is to formulate the feature selection problem as a biobjective optimization problem, with the aim of maximizing the performance of the data analysis model (the quality of the data training fitting) while minimizing the number of features used.This work was partially supported by the IPROCOM Marie Curie initial training network, funded through the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grants agreement No. 316555, and by the Romanian National Authority for Scientific Research, CNDIUEFISCDI, project number PN-II-PT-PCCA-2011-3.2- 0917. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A Brokering Framework for Assessing Legal Risks in Big Data and the Cloud

    Get PDF
    “Cloud computing” and “Big Data” are amongst the most hyped-up terms and buzzwords of the moment. After decades in which individuals and companies used to host their data and applications using their own IT infrastructure, the world has seen the stunning transformation of the Internet. Major shifts occurred when these infrastructures began to be outsourced to public Cloud providers to match commercial expectations. Storing, sharing and transferring data and databases over the Internet is convenient, yet legal risks cannot be eliminated. Legal risk is a fast-growing area of research and covers various aspects of law. Current studies and research on Cloud computing legal risk assessment have been, however, limited in scope and focused mainly on security and privacy aspects. There is little systematic research on the risks, threats and impact of the legal issues inherent to database rights and “ownership” rights of data. Database rights seem to be outdated and there is a significant gap in the scientific literature when it comes to the understanding of how to apply its provisions in the Big Data era. This means that we need a whole new framework for understanding, protecting and sharing data in the Cloud. The scheme we propose in this chapter is based on a risk assessment-brokering framework that works side by side with Service Level Agreements (SLAs). This proposed framework will provide better control for Cloud users and will go a long way to increase confidence and reinforce trust in Cloud computing transactions

    EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats

    Get PDF
    Aim: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation‐plot records to the habitats of the EUNIS system, use it to classify a European vegetation‐plot database, and compile statistically‐derived characteristic species combinations and distribution maps for these habitats. Location: Europe. Methods: We developed the classification expert system EUNIS‐ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set‐theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species‐to‐habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results: Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man‐made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions: EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS‐ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment
    corecore